Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 86: 9-19, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26608618

RESUMO

Members of the Chaetomiaceae are among the most studied fungi in industry and among the most reported in investigations of biomass degradation in both natural and laboratory settings. The family is recognized for production of carbohydrate-active enzymes and antibiotics. Thermophilic species are of special interest for their abilities to produce thermally stable enzymes and to be grown under conditions that are unsuitable for potential contaminant microorganisms. Such interests led to the recent acquisition of genome sequences from several members of the family, including thermophilic species, several of which are reported here for the first time. To date, however, thermophilic fungi in industry have served primarily as parts reservoirs and there has been no good genetic model for species in the family Chaetomiaceae or for thermophiles in general. We report here on the reproductive biology of the thermophile Myceliophthora heterothallica, which is heterothallic, unlike most described species in the family. We confirmed heterothallism genetically by following the segregation of mating type idiomorphs and other markers. We have expanded the number of known sexually-compatible individuals from the original isolates from Indiana and Germany to include several isolates from New Mexico. An interesting aspect of development in M. heterothallica is that ascocarp formation is optimal at approximately 30 °C, whereas vegetative growth is optimal at 45 °C. Genome sequences obtained from several strains, including isolates of each mating type, revealed mating-type regions whose genes are organized similarly to those of other members of the Sordariales, except for the presence of a truncated version of the mat A-1 (MAT1-1-1) gene in mating-type a (MAT1-2) strains. In M. heterothallica and other Chaetomiaceae, mating-type A (MAT1-1) strains have the full-length version of mat A-1 that is typical of mating-type A strains of diverse Ascomycota, whereas a strains have only the truncated version. This truncated mat A-1 has an intact open reading frame and a derived start codon that is not present in mat A-1 from A strains. The predicted protein contains a region that is conserved across diverse mat A-1 genes, but it lacks the major alpha1 domain, which characterizes proteins in this family and is known to be required for fertility in A strains from other Ascomycota. Finally, we have used genes from M. heterothallica to probe for mating genes in other homothallic and heterothallic members of the Chaetomiaceae. The majority of homothallic species examined have a typical mat A-1,2,3 (MAT1-1-1,2,3) region in addition to an unlinked mat a-1 (MAT1-2-1) gene, reflecting one type of homothallism commonly observed in diverse Ascomycota.


Assuntos
Ascomicetos/genética , Genes Fúngicos Tipo Acasalamento , Ascomicetos/classificação , Ascomicetos/fisiologia , Cruzamentos Genéticos , Filogenia , Reação em Cadeia da Polimerase , Especificidade da Espécie , Temperatura
2.
PLoS Genet ; 10(12): e1004759, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474575

RESUMO

Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Basidiomycota/genética , Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Madeira/microbiologia , Parede Celular/genética , Parede Celular/metabolismo , Celulose/metabolismo , Regulação Fúngica da Expressão Gênica , Lignina/metabolismo , Anotação de Sequência Molecular , Transcriptoma , Madeira/metabolismo
3.
Nat Biotechnol ; 29(10): 922-7, 2011 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-21964414

RESUMO

Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.


Assuntos
Ascomicetos/genética , Biomassa , Genoma Fúngico/genética , Genômica/métodos , Temperatura , Ascomicetos/enzimologia , Ascomicetos/crescimento & desenvolvimento , Biodegradação Ambiental , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hidrólise , Medicago sativa/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Polissacarídeos/metabolismo , Proteoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
4.
Genome Res ; 21(6): 885-97, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21543515

RESUMO

The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.


Assuntos
Aspergillus niger/genética , Biologia Computacional/métodos , Evolução Molecular , Variação Genética , Genoma Fúngico/genética , Filogenia , Sequência de Bases , Perfilação da Expressão Gênica , Rearranjo Gênico/genética , Transferência Genética Horizontal/genética , Genômica/métodos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia/genética
5.
Nat Biotechnol ; 26(5): 553-60, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18454138

RESUMO

Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.


Assuntos
Mapeamento Cromossômico/métodos , DNA Fúngico/genética , Genoma Fúngico/genética , Análise de Sequência de DNA/métodos , Trichoderma/genética , Sequência de Bases , Dados de Sequência Molecular , Trichoderma/classificação
6.
Genome Biol ; 5(10): R77, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15461803

RESUMO

BACKGROUND: Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature. RESULTS: We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs. CONCLUSIONS: Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae.


Assuntos
Bacillus/classificação , Bacillus/genética , Genoma Bacteriano , Genômica , Antibacterianos/metabolismo , Bacillus/metabolismo , Bacillus/virologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/virologia , Elementos de DNA Transponíveis/genética , Dados de Sequência Molecular , Prófagos/genética , Transporte Proteico , Sideróforos/genética , Sideróforos/metabolismo , Esporos Bacterianos/genética
7.
Proc Natl Acad Sci U S A ; 100(10): 5682-7, 2003 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12719520

RESUMO

DNA microarrays comprising approximately 95% of the Bacillus subtilis annotated protein coding ORFs were deployed to generate a series of snapshots of genomewide transcriptional changes that occur when cells are grown under various conditions that are expected to increase or decrease transcription of the trp operon segment of the aromatic supraoperon. Comparisons of global expression patterns were made between cells grown in the presence of indole acrylic acid, a specific inhibitor of tRNA(Trp) charging; cells deficient in expression of the mtrB gene, which encodes the tryptophan-activated negative regulatory protein, TRAP; WT cells grown in the presence or absence of two or three of the aromatic amino acids; and cells harboring a tryptophanyl tRNA synthetase mutation conferring temperature-sensitive tryptophan-dependent growth. Our findings validate expected responses of the tryptophan biosynthetic genes and presumed regulatory interrelationships between genes in the different aromatic amino acid pathways and the histidine biosynthetic pathway. Using a combination of supervised and unsupervised statistical methods we identified approximately 100 genes whose expression profiles were closely correlated with those of the genes in the trp operon. This finding suggests that expression of these genes is influenced directly or indirectly by regulatory events that affect or are a consequence of altered tryptophan metabolism.


Assuntos
Bacillus subtilis/genética , Genes Bacterianos , Genoma Bacteriano , Transcrição Gênica , Triptofano/metabolismo , Bacillus subtilis/metabolismo , Meios de Cultura , Sondas de DNA , DNA Complementar/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação
8.
Mol Microbiol ; 43(5): 1331-45, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11918817

RESUMO

In Bacillus subtilis, the competence transcription factor ComK activates its own transcription as well as the transcription of genes that encode DNA transport proteins. ComK is expressed in about 10% of the cells in a culture grown to competence. Using DNA microarrays representing approximately 95% of the protein-coding open reading frames in B. subtilis, we compared the expression profiles of wild-type and comK strains, as well as of a mecA mutant (which produces active ComK in all the cells of the population) and a comK mecA double mutant. In these comparisons, we identified at least 165 genes that are upregulated by ComK and relatively few that are downregulated. The use of reporter fusions has confirmed these results for several genes. Many of the ComK-regulated genes are organized in clusters or operons, and 23 of these clusters are preceded by apparent ComK-box promoter motifs. In addition to those required for DNA uptake, other genes that are upregulated in the presence of ComK are probably involved in DNA repair and in the uptake and utilization of nutritional sources. From this and previous work, we conclude that the ComK regulon defines a growth-arrested state, distinct from sporulation, of which competence for genetic transformation is but one notable feature. We suggest that this is a unique adaptation to stress and that it be termed the 'K-state'.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Genoma Bacteriano , Dados de Sequência Molecular , Fatores de Transcrição/genética , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...